If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9a^2+21a+10=0
a = 9; b = 21; c = +10;
Δ = b2-4ac
Δ = 212-4·9·10
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{81}=9$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(21)-9}{2*9}=\frac{-30}{18} =-1+2/3 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(21)+9}{2*9}=\frac{-12}{18} =-2/3 $
| 7x—2=x–16 | | 5(a-1)=-2a+3(a+5) | | 9(x1)=81 | | f=5/6 | | 6(x1)=81 | | 7x1=1/49 | | 3(2x-1=15 | | 2(3x-2)+6=14 | | 7+2x+2x=-17 | | 3+x+2x=-21 | | 7x+8=+40 | | z/10=6/5 | | -8-5x=-63 | | 8(x-2)+10=6(x+2) | | 7x·(3x−2)6−2·(7x2−2)4=52 | | d^2-10+21=0 | | 17-3x=14* | | 4f+10=2f-6 | | 2y2+9y-115=0 | | 2x+3/x-2=-3(1/2) | | 7x−16=2(2x−2) | | 2n+3=4n-17 | | 6y-4≤2y=7 | | 4y+30=200 | | 4y+90=200 | | 4x+14=98-10x | | (2x+10)+(3x-10)+40=180 | | 9-2m=-5 | | 0,625x-6=0,5x+12 | | 6(y−4)+3(y+7)=6. | | -9x+16=-29 | | A=(3/4)b-16 |